A Ratty Story

09-811

Cara Pillitteri, DVM
Resident, Anatomic Pathology
Department of Pathobiology
College of Veterinary Medicine
University of Tennessee - Knoxville

Permission granted only for viewing on SEVPAC website
History

- Adult intact male Zucker rat
- Part of a research protocol
- One of eight rats submitted for evaluation

Permission granted only for viewing on SEVPAC website
Gross Findings

- 8/8 rats underweight to emaciated
- 8/8 kyphosis
- 4/8 submandibular swelling
- 1/8 corneal/conjunctival keratinization
ACINAR ATROPHY

200X image of salivary gland

Permission granted only for viewing on SEVPAC website
Histopathology

- Marked chronic diffuse pyogranulomatous sialoadenitis with ductular squamous metaplasia, keratinization, and intralesional mixed bacteria
Additional Tests

Culture

- 1000 colonies Escherichia coli
- >200 colonies Gram negative nonfermentative rod (Acinetobacter or Stenotrophomonas)
- >100 colonies Gram positive anaerobic rod (Actinomyces-like)

http://wineserver.ucdavis.edu

Permission granted only for viewing on SEVPAC website
Etiology: Vitamin A Deficiency
Functions

- Vision
 - Rhodopsin

- Metabolism
 - Lipid
 - Bone

- Growth
 - Growth factor receptors
 - Tumor suppressor genes

- Resistance to infection
 - Intestinal barrier

- Anti-inflammatory
 - Neutrophil inhibition

Permission granted only for viewing on SEVPAC website
Sialoadenitis

- Early lesions
 - Glandular epithelial cell atrophy
 - Interstitial edema and fibroplasia
 - Decreased salivary secretion

- Decreased growth factor receptors
Sialoadenitis

- Neutrophilic and bacterial invasion of salivary ducts
- Decreased salivary flow
- Decreased neutrophilic inhibition
Later lesions
- Ductular squamous metaplasia and keratinization
 - Occlusion & rupture

Unclear pathogenesis
- Increased basal cell proliferation
- Decreased differentiation signals
- Alterations in biochemical milieu
Corneal/Conjunctival keratinization

Unclear pathogenesis
 › Increased basal cell proliferation
 › Decreased differentiation signals
 › Alterations in biochemical milieu
Additional Reported Lesions
Atrophy

- Thyroid gland
- Parathyroid glands
- Anterior pituitary
- Harderian glands
- Lacrimal glands
- Seminiferous tubules
- Prostate gland
- Seminal vesicles
- Coagulating gland
- Exocrine pancreas
- Brunner’s glands
- Sebaceous glands
Squamous metaplasia and keratinization

- Harderian glands
- Lacrimal glands
- Meibomian glands
- Upper respiratory epithelium
- Olfactory epithelium
- Trachea
- Bronchi
- Gastric epithelium*
- Pancreatic ducts

- Renal pelvis
- Ureter
- Urinary Bladder
- Seminiferous tubules
- Prostate
- Seminal vesicles
- Coagulating gland
- Oviduct
- Uterus
- Vagina

Permission granted only for viewing on SEVPAC website
Additional lesions by system

- **Respiratory**
 - Hyperplasia of the olfactory epithelium
 - Thickened alveolar BM
 - Impaired type II pneumocyte differentiation
 - Interstitial pneumonia

- **Cardiovascular**
 - Focal myofiber degeneration
Additional lesions by system

- **Alimentary**
 - Lingual ulcers*
 - Taste bud hyperkeratosis
 - Esophageal hyperkeratosis*
 - Decreased duodenal goblet cell numbers
 - Increased Lactobacillus and Escherichia coli

- **Hepatic**
 - Hepatocellular vacuolation
Additional lesions by system

- **Special Senses**
 - Retinal degeneration (photoreceptor)

- **Hematopoietic**
 - Splenic and thymic lymphoid depletion
 - Hyperkeratosis of Hassall’s corpuscles

- **Skeletal**
 - Kyphosis*
General considerations

- Emaciation*
 - Decreased intestinal absorptive capacity
 - Appetite suppression
 - Increased fatty acid oxidation
 - Lack of dietary palatability

- Secondary bacterial infection

*Permission granted only for viewing on SEVPAC website
THANK YOU!

Shelley Newman, DVM, DVSc, DACVP

Dee Stephenson
Sharon Schlosshen
Michelle Hill
David Durtschi
Any Questions?
General Pathology
Metabolism of Retinol

- Obtained from diet
 - Retinol esters and Carotenoids (β-Carotene)

- Transported to liver in chylomicrons
 - Bind hepatocellular apolipoprotein E receptor

- May be esterified for hepatic storage
Metabolism of Retinol

- Stored retinol released into circulation
 - Carried by hepatocellular Retinol Binding Protein

- Uptake by other cell types
 - Cell-specific Retinol Binding Proteins

- Hepatocellular Retinol Binding Protein released back into circulation
Metabolism of Retinol

- **Eye**
 - Oxidized to all-trans retinaldehyde
 - Isomerized to 11-cis retinaldehyde

www.taekwondotigers.com

Permission granted only for viewing on SEVPAC website
Metabolism of Retinol

- Other tissues
 - Oxidized to all-trans retinaldehyde
 - Alcohol dehydrogenases
 - Short-chain dehydrogenase/reductases
 - Cytochrome P450s
 - Further oxidized to all-trans retinoic acid
 - Aldehyde dehydrogenases
 - Some isomerized to 9-cis retinoic acid
Functions

- **Vision**
 - 11-cis retinal associates with 7 transmembrane rod protein → rhodopsin
 - Photon reaching rods isomerize 11-cis retinal to all-trans retinal
 - All-trans retinal dissociates
 - Conformational change in opsin
Functions

- Growth
 - All-trans retinoic acid binds to Retinoic Acid Receptors (RAR)
 - RAR forms heterodimer with Retinoic X Receptor (RXR)
 - RAR-RXR activates Retinoic Acid Response Elements (RARE) in promoter regions
 - Growth factor receptors
 - Tumor suppressor genes
Functions

- Resistance to Infection
 - Strengthens intestinal barrier
 - Promotes goblet cell differentiation
 - Promotes defensin production
 - Suppresses expression of TLRs 2 and 5
Functions

- Metabolism
 - 9-cis retinoic acid activates RXR
 - RXR forms heterodimers with PPARs and Vitamin D receptors
Functions

- RXR-PPARs
 - Fatty acid oxidation in adipose and muscle
 - Adipogenesis
- Lipoprotein metabolism

- RXR-Vitamin D receptors
 - Osteoclasia
 - Osteoblast secretory activity

Permission granted only for viewing on SEVPAC website
Functions

- Anti-inflammatory
 - Inhibits neutrophil superoxide production
 - Inhibits release of neutrophilic lysozomal enzymes
 - Decreases synthesis of LTB4

Asson-Batres MA et al. Vitamin A deficiency leads to increased cell proliferation in olfactory epithelium in mature rats.

Wolbach SB and Howe PR. Tissue changes following deprivation of fat-soluble vitamin A. The Journal of Experimental Medicine 42(6)753-777 (1925)