CASE 17

FANCONI-LIKE SYNDROME IN A SIV-INFECTED MACAQUES DURING HIGH-DOSE ANTIRETROVIRAL THERAPY

David Liu
Tulane National Primate Research Center

Permission granted only for viewing on SEVPAC website
History:

• 4.42-years-old, male Indian rhesus macaque (*Macaca mulatta*)

• Inoculated with SIVmac251 one year ago, and developed chronic viremia, low CD4 counts, chronic dehydration, and weight loss.
 • Treated with the antiretroviral drug PMPA (9-[2-(r)-(phosphonomethoxy) propyl] adenine or tenofovir (30 mg/kg of body weight) subcutaneously once daily for 2 months.
 • Humanely euthanized due to the poor prognosis.

• Hematology:
 • Lymphocytes: 24.1% (35.2-84.1%). All others were in the normal ranges.

• Biochemistry

• Urinalysis
 • Not available.
Major gross findings:

• Thin body condition with minimal body fat.

• Lungs failed to completely collapse with multifocal to coalescing, dark-red, meaty foci on the pleural surface and within the pulmonary parenchyma.

• Diffusely both kidneys were pale white to yellow.

• The spleen and all peripheral lymph nodes were 2-3x enlarged.
Pneumocystis pneumonia
Morphologic Diagnosis and Etiology:

• Kidney, nephropathy characterized by nuclear dysplasia, interstitial fibrosis, PCT eosinophilia, tubular proteinosis, tubular necrosis, interstitial nephritis, and cellular casts, consistent with Fanconi-like syndrome caused by PMPA (tenofovir) toxicity.

• Lung. Pneumocystis pneumonia (not submitted).
Comment:

- Due to its efficacy and safety, PMPA has been commonly used for treating both HIV and hepatitis B virus infections.

- Prolonged treatment of macaques with a high dose of PMPA (30 mg/kg of body weight subcutaneously once daily) can result in proximal renal tubular dysfunction.

 - A Fanconi-like syndrome characterized by glucosuria, aminoaciduria, hypophosphatemia, and bone pathology.

- Chronic administration of a low dose of PMPA (10 mg/kg subcutaneously once daily) has no any adverse health effects within 3 years of treatment.

- PMPA is a nucleotide reverse transcriptase inhibitor.

 - An analog of dAMP, PMPA inhibits the activity of HIV-1 or SIV reverse transcriptase by competing with natural substrate thymidine triphosphate and by causing DNA chain termination following its incorporation into viral DNA.
• The toxicity of PMPA is probably due to its renal clearance. PMPA and its related nucleotide analogs are excreted in unchanged form in urine through a combination of renal filtration and active tubular secretion.

• Due to more drug uptake from plasma than secretion into the tubular lumen, the drug accumulates in tubular epithelial cells and causes renal disorder by direct renal epithelial damage.

• The proximal tubule epithelial cell is the main target of PMPA toxicity due to its complement of cell membrane transporters that favor PMPA accumulation.

• Current evidence suggests that mitochondria are the target organelles of PMPA cytotoxicity by decreasing mitochondrial DNA replication through inhibition of mtDNA polymerase γ.
Acknowledgement

Dr. Peter Didier
Mr. Maury Duplantis
Lifang Li
Mrs. Carol Coyne
Mrs. Monica Mayer

References

• Sanders-Beer et al. Clinical monitoring and correlates of nephropathy in SIV-infected macaques during high-dose antiretroviral therapy. AIDS Research and Therapy 2011, 8:3