Oral mass in a Wheaten Terrier

Annabelle Burnum, DVM
Anatomic Pathology Resident
University of Georgia College of Veterinary Medicine
Signalment, History & Gross Findings

- 11 year old neutered male Wheaten Terrier
Signalment, History & Gross Findings

- 11 year old neutered male Wheaten Terrier
- Presented for removal of an oral mass located at the mandibular symphysis
Signalment, History & Gross Findings

- 11 year old neutered male Wheaten Terrier
- Presented for removal of an oral mass located at the mandibular symphysis
- The mass was 3.2 x 3.0 x 2.5 cm, firm, tan, bulbous, and immobile
Signalment, History & Gross Findings

- 11 year old neutered male Wheaten Terrier
- Presented for removal of an oral mass located at the mandibular symphysis
- The mass was 3.2 x 3.0 x 2.5 cm, firm, tan, bulbous, and immobile
- On cut surface, it had mineralized and cystic areas
Histopathologic Findings
Morphologic Diagnoses

Mandible: Amyloid-producing odontogenic tumor
Confirmatory testing
Odontogenic tumors
Odontogenic tumors

- Presentation: Solitary masses associated with the dental arcade
- Behavior: Benign or locally invasive, but not metastatic
- Arise from components of the developing tooth
 - Odontogenic epithelium
 - Odontogenic ectomesenchyme
 - Odontogenic extracellular matrix ("Dental hard tissue")
 - Periodontal ligament
Odontogenic tumors

- Presentation: Solitary masses associated with the dental arcade
- Behavior: Benign or locally invasive, but not metastatic
- Arise from components of the developing tooth
 - Odontogenic epithelium
 - Odontogenic ectomesenchyme
 - Odontogenic extracellular matrix ("Dental hard tissue")
 - Periodontal ligament
Odontogenic tumors

- Odontogenic epithelium
 - Basilar (arrows)
 - Cuboidal to columnar
 - Palisade along the basement membrane
 - Apical nuclei
 - Basilar cytoplasmic clearing or vacuolization
 - Non-basilar (arrowheads)
 - Long intercellular bridges
 - Variable cell morphology
 - Cytoplasmic vacuolization

Credit: Tumors in Domestic Animals, Meuten 2017
Odontogenic tumors

- Odontogenic epithelium
 - Basilar (arrows)
 - Cuboidal to columnar
 - Palisade along the basement membrane
 - Apical nuclei
 - Basilar cytoplasmic clearing or vacuolization
 - Non-basilar (arrowheads)
 - Long intercellular bridges
 - Variable cell morphology
 - Cytoplasmic vacuolization

Credit: *Tumors in Domestic Animals*, Meuten 2017
Odontogenic tumors

- Odontogenic epithelium
 - Basilar (arrows)
 - Cuboidal to columnar
 - Palisade along the basement membrane
 - Apical nuclei
 - Basilar cytoplasmic clearing or vacuolization
 - Non-basilar (arrowheads)
 - Long intercellular bridges
 - Variable cell morphology
 - Cytoplasmic vacuolization

Credit: Tumors in Domestic Animals, Meuten 2017
Odontogenic tumors

- Odontogenic extracellular matrix
 - Dentin (produced by odontoblasts)
 - Resembles bone, but is acellular
 - Well-organized: tubular with imbrication lines
 - Poorly organized: irregular and not well mineralized
 - Cementum (produced by cementoblasts)
 - May have cementocytes, cementoblasts, and cementoclasts
 - Basophilic reversal lines
 - Enamel (produced by ameloblasts)
 - Mature enamel dissolves during decalcification
 - May see immature crystals or rods
 - Successive deposition leaves incremental lines

Credit: Tumors in Domestic Animals, Meuten 2017
Odontogenic tumors

- **Odontogenic extracellular matrix**
 - Dentin (produced by odontoblasts)
 - Resembles bone, but is acellular
 - Well-organized: tubular with imbrication lines
 - Poorly organized: irregular and not well mineralized
 - Cementum (produced by cementoblasts)
 - May have cementocytes, cementoblasts, and cementoclasts
 - Basophilic reversal lines
 - Enamel (produced by ameloblasts)
 - Mature enamel dissolves during decalcification
 - May see immature crystals or rods
 - Successive deposition leaves incremental lines

Credit: *Tumors in Domestic Animals*, Meuten 2017
Odontogenic tumors

- Odontogenic extracellular matrix
 - Dentin (produced by odontoblasts)
 - Resembles bone, but is acellular
 - Well-organized: tubular with imbrication lines
 - Poorly organized: irregular and not well mineralized
 - Cementum (produced by cementoblasts)
 - May have cementocytes, cementoblasts, and cementoclasts
 - Basophilic reversal lines
 - Enamel (produced by ameloblasts)
 - Mature enamel dissolves during decalcification
 - May see immature crystals or rods
 - Successive deposition leaves incremental lines

Credit: Wheater’s Functional Histology, 2006
Odontogenic tumors

- Odontogenic extracellular matrix
 - Dentin (produced by odontoblasts)
 - Resembles bone, but is acellular
 - Well-organized: tubular with imbrication lines
 - Poorly organized: irregular and not well mineralized
 - Cementum (produced by cementoblasts)
 - May have cementocytes, cementoblasts, and cementoclasts
 - Basophilic reversal lines
 - Enamel (produced by ameloblasts)
 - Mature enamel dissolves during decalcification
 - May see immature crystals or rods
 - Successive deposition leaves incremental lines

Credit: Tumors in Domestic Animals, Meuten 2017
Odontogenic tumors

- Odontogenic extracellular matrix
 - Dentin (produced by odontoblasts)
 - Resembles bone, but is acellular
 - Well-organized: tubular with imbrication lines
 - Poorly organized: irregular and not well mineralized
 - Cementum (produced by cementoblasts)
 - May have cementocytes, cementoblasts, and cementoclasts
 - Basophilic reversal lines
 - Enamel (produced by ameloblasts)
 - Mature enamel dissolves during decalcification
 - May see immature crystals or rods
 - Successive deposition leaves incremental lines

Credit: Tumors in Domestic Animals, Meuten 2017
Odontogenic tumors

- Odontogenic extracellular matrix
 - Dentin (produced by odontoblasts)
 - Resembles bone, but is acellular
 - Well-organized: tubular with imbrication lines
 - Poorly organized: irregular and not well mineralized
 - Cementum (produced by cementoblasts)
 - May have cementocytes, cementoblasts, and cementoclasts
 - Basophilic reversal lines
 - Enamel (produced by ameloblasts)
 - Mature enamel dissolves during decalcification
 - May see immature crystals or rods
 - Successive deposition leaves incremental lines

Credit: Tumors in Domestic Animals, Meuten 2017
Odontogenic tumors

- Odontogenic extracellular matrix
 - Dentin (produced by odontoblasts)
 - Resembles bone, but is acellular
 - Well-organized: tubular with imbrication lines
 - Poorly organized: irregular and not well mineralized
 - Cementum (produced by cementoblasts)
 - May have cementocytes, cementoblasts, and cementoclasts
 - Basophilic reversal lines
 - Enamel (produced by ameloblasts)
 - Mature enamel dissolves during decalcification
 - May see immature crystals or rods
 - Successive deposition leaves incremental lines

Credit: Dr. Md. Nurul Islam
Odontogenic tumors

- Periodontal ligament
 - Fine fibrillar collagen
 - Regularly spaced stellate cells
 - Regularly spaced, angular or dilated, empty blood vessels
Odontogenic tumors

- Odontogenic epithelium without odontogenic ectomesenchyme
 - Acanthomatous ameloblastoma, etc.

- Odontogenic epithelium with odontogenic ectomesenchyme
 - Ameloblastic fibro-odontoma, complex odontoma, etc.

- Odontogenic ectomesenchyme with or without odontogenic epithelium
 - Peripheral odontogenic fibroma (previously termed fibromatous epulis), etc.

- Cysts of the jaw
 - Dentigerous cysts, etc.
Odontogenic tumors

- Odontogenic epithelium without odontogenic ectomesenchyme
 - Acanthomatous ameloblastoma, etc.

- Odontogenic epithelium with odontogenic ectomesenchyme
 - Ameloblastic fibro-odontoma, complex odontoma, etc.

- Odontogenic ectomesenchyme with or without odontogenic epithelium
 - Peripheral odontogenic fibroma (previously termed fibromatous epulis), etc.

- Cysts of the jaw
 - Dentigerous cysts, etc.
Odontogenic tumors

- **Odontogenic epithelium without odontogenic ectomesenchyme**
 - Acanthomatous ameloblastoma, etc.

- **Odontogenic epithelium with odontogenic ectomesenchyme**
 - Ameloblastic fibro-odontoma, complex odontoma, etc.

- **Odontogenic ectomesenchyme with or without odontogenic epithelium**
 - Peripheral odontogenic fibroma (previously termed fibromatous epulis), etc.

- **Cysts of the jaw**
 - Dentigerous cysts, etc.
Amyloid-producing odontogenic tumor

- Rare tumor reported in dogs, cats, and a single goat
- Arise from odontogenic epithelium
- May include areas of keratinization and dental hard tissue (cementum or dentin)
- **Characterized by variably mineralized, Congo red-positive amyloid deposits**
 - Mineralized amyloid can form laminated concretions called Liesegang rings
 - Different from the amyloid formed in other circumstances (e.g. AA, AL)
 - Derived from enamel proteins secreted from ameloblasts
Amyloid-producing odontogenic tumor

- Rare tumor reported in dogs, cats, and a single goat
- Arise from odontogenic epithelium
- May include areas of keratinization and dental hard tissue (cementum or dentin)
- Characterized by variably mineralized, Congo red-positive amyloid deposits
 - Mineralized amyloid can form laminated concretions called Liesegang rings
 - Different from the amyloid formed in other circumstances (e.g. AA, AL)
 - Derived from enamel proteins secreted from AMELOBLASTS
Amyloid-producing odontogenic tumor

Probably arises from ameloblasts!
Acknowledgements

- Martha Frances Dalton
- Kaori Sakamoto
- Elizabeth Uhl
- Our awesome histo techs
- Buffy Howerth and James Stanton
- My amazing resident-mates
References

<table>
<thead>
<tr>
<th>Tumors described in current text</th>
<th>Other previously used terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odontogenic epulis without odontogenic ectomesenchyme</td>
<td></td>
</tr>
<tr>
<td>Ameloblastoma</td>
<td>Adenomatousameloblastoma</td>
</tr>
<tr>
<td>Canine acanthomatous ameloblastoma</td>
<td>Acanthomatous epulis</td>
</tr>
<tr>
<td></td>
<td>Perineural ameloblastoma</td>
</tr>
<tr>
<td></td>
<td>Basal carcinoma</td>
</tr>
<tr>
<td></td>
<td>Adenomatous tumours</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Ameloblastic carcinoma</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Amyloid producing odontogenic tumor</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Odontogenic epulis with odontogenic ectomesenchyme</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Ameloblastic fibroma</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Intussusceptive ameloblastic fibroma</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Odontogenic fibro-epulis, ameloblastic fibroductinoma</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Odontogenic fibro-epulis-odontoma</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Complex odontoma</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound odontoma</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Malignant and/or odontogenic ectomesenchyme with or without odontogenic epithelium</td>
<td></td>
</tr>
<tr>
<td>Cemantoma, cemenoblastoma</td>
<td>Periapical cemental dysplasia</td>
</tr>
<tr>
<td></td>
<td>Gigantiform cementoblastoma</td>
</tr>
<tr>
<td></td>
<td>Benign cemenoblastoma</td>
</tr>
<tr>
<td></td>
<td>Cemenifying fibroma</td>
</tr>
<tr>
<td>Odontogenic myxoma</td>
<td></td>
</tr>
<tr>
<td>Odontogenic myxosarcoma</td>
<td></td>
</tr>
<tr>
<td>Odontogenic myxomasarcoma</td>
<td></td>
</tr>
<tr>
<td>Odontogenic myxomyxoma</td>
<td></td>
</tr>
<tr>
<td>Odontogenic myxosarcoma</td>
<td></td>
</tr>
<tr>
<td>Odontogenic fibro-epulis</td>
<td>Fibromatous epulis of periodontal ligament origin</td>
</tr>
<tr>
<td></td>
<td>Fibromatous epulis</td>
</tr>
<tr>
<td></td>
<td>Osseous cyst</td>
</tr>
<tr>
<td></td>
<td>Mixed epulis</td>
</tr>
<tr>
<td>Cysts of the jaw</td>
<td></td>
</tr>
<tr>
<td>Dentigerous cyst, eruption cyst</td>
<td>Odontogenic cyst</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Radicular cyst</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Lateral periodontal cyst</td>
<td>Odontogenic cyst</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Odontogenic parangioctoid cyst</td>
<td>Odontogenic cyst</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterotopic odontogenic cyst</td>
<td>Temporal teratoma of the horse</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-neoplastic tumors</td>
<td></td>
</tr>
<tr>
<td>Gingival hyperplasia</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Peripheral giant cell granuloma</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Proliiferative gingivitis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Lymphohistiocytic gingivitis</td>
<td></td>
</tr>
</tbody>
</table>

*Approximately one-third to half of all odontogenic tumors in dogs are peripheral odontogenic fibroma or canine acanthomatous ameloblastoma (formally referred to as epulis).