The dyspneic dragon
SEVPAC May 20-21, 2017
Nicholas Crossland
DVM, DACVP
ncrossla@tulane.edu
Black beard: the dyspneic dragon
SEVPAC May 20-21, 2017

Photo credit:
http://www.beardeddragontime.com/2014/03/bearded-dragon-behavior.html
Signalment:
• Four-year-old male captive central bearded dragon (*Pogona vitticeps*)

Clinical history:
• One week history of increased respiratory effort
 • Open mouth gaping with periods of blackening of the animal’s beard
 • Kyphosis
 • Occasional expulsion of mucoid oral discharge

Husbandry:
• Interpreted as adequate by veterinary staff
• Owner reports no contact with other reptiles during current ownership
Physical exam and hematology findings:

- 5-10% dehydrated; mild hypernatremia and hyperchloremia
- Thin body condition
- **Mild monocytosis** and **mild leukopenia**
- *Toxic changes to heterophil lineage with a left shift

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Value</th>
<th>Reference Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monocytes (K/µL)</td>
<td>1.0</td>
<td>0-0.5</td>
</tr>
<tr>
<td>Lymphocytes (K/µL)</td>
<td>2.5</td>
<td>4.0-12.0</td>
</tr>
<tr>
<td>Heterophils (K/µL)</td>
<td>3.8*</td>
<td>1.6-7.3</td>
</tr>
</tbody>
</table>

Clinical intervention and outcome:

- Fluid therapy to correct hydration status
- Administration of antibiotics for presumptive bacterial pneumonia (Ceftazidime and metronidazole)
- Six days into the course of treatment the animal died and was submitted to the Louisiana Animal Disease and Diagnostic Laboratory for postmortem examination
Morphological diagnosis:

• Lung:
 • Interstitial pneumonia, heterophilic and lymphocytic, with pneumocyte degeneration, necrosis, hyperplasia, both intranuclear and intracytoplasmic inclusions, and mixed intraluminal bacteria
Ancillary diagnostic tests:

- Aerobic culture (Sheep blood and MacConkey agar)
 - No growth observed (animal was on antibiotics for 6 days prior to death)
Ancillary diagnostic tests:

• Aerobic culture (Sheep blood and MacConkey agar)
 • No growth observed (animal was on antibiotics for 6 days prior to death)

• Gram and Giemsa special stains
 • Mild to moderate Gram positive rods and cocci and gram negative rods within luminal exudate
Ancillary diagnostic tests:

• Aerobic culture (Sheep blood and MacConkey agar)
 • No growth observed (animal was on antibiotics for 6 days prior to death)
• Gram and Giemsa special stains
 • Mild to moderate Gram positive rods and cocci and gram negative rods within luminal exudate
• Transmission electron microscopy
 • 80-90 nm, intranuclear, hexagonal viral particles observed within pneumocytes
 • Poorly discernible nuclear membrane in virally infected cells
 • Abundant swollen cytoplasmic organelles/vacuoles indicative of pneumocyte degeneration
Ancillary diagnostic tests:

- Aerobic culture (Sheep blood and MacConkey agar)
 - No growth observed (animal was on antibiotics for 6 days prior to death)
- Gram and Giemsa special stains
 - Mild to moderate Gram positive rods and cocci and gram negative rods within luminal exudate
- Transmission electron microscopy
 - 80-90 nm, intranuclear, hexagonal viral particles observed within pneumocytes
 - Poorly discernible nuclear membrane in virally infected cells
 - Abundant swollen cytoplasmic organelles/vacuoles indicative of degeneration
- PCR
 - *Adenoviridae, Herpesviridae, Ranaviridae, Paramyxoviridae, and Reoviridae* families
 - Consensus Pan-adenoviral PCR (**DNA-dependent DNA polymerase gene** positive
 - 100% sequence identity to *Helodermatid Adenovirus 2* (HeAdV2) (Genbank #KU936043.1)
Ancillary diagnostic tests:

- Aerobic culture (Sheep blood and MacConkey agar)
 - No growth observed (animal was on antibiotics for 6 days prior to death)
- Gram and Giemsa special stains
 - Mild to moderate Gram positive rods and cocci and gram negative rods within luminal exudate
- Transmission electron microscopy
 - 80-90 nm, intranuclear, hexagonal viral particles observed within pneumocytes
 - Poorly discernible nuclear membrane in virally infected cells
 - Abundant swollen cytoplasmic organelles/vacuoles indicative of degeneration
- PCR
 - Adenoviridae, Herpesviridae, Ranaviridae, Paramyxoviridae, and Reoviridae families
 - Consensus Pan-adenoviral PCR (DNA-dependent DNA polymerase gene) positive
 - 100% sequence identity to Helodermatid Adenovirus 2 (HeAdV2) (Genbank #KU936043.1)
 - Mycoplasmataceae family
 - 16s rRNA gene positive
 - Novel Mycoplasma sp.; 95% homology to M. iguanae: full length 16s rRNA PCR and sequencing pending
Helodermatid adenovirus 2 (HeAdV2):

• First isolated in 2009 from tissue homogenates collected from a mortality event at a Danish zoo (juveniles)
 • Co-housed **Gila monsters** and **Mexican beaded lizards**
 • Unfortunately, clinical signs and descriptive pathology for these mortality events were not described
Helodermatid adenovirus 2 (HeAdV2):

- First isolated in 2009 from tissue homogenates collected from a mortality event at a Danish zoo (juveniles)
 - Co-housed Gila monsters and Mexican beaded lizards
 - Unfortunately, clinical signs and descriptive pathology for these mortality events were not described
- Subsequently, HeAdV2 has been detected from three non-helodermatid host:
 - two bearded dragons (2011 & 2017) and one death adder (2017)
 - Animals displayed subjective signs such as “ill thrift” and “poor doing”
 - Histopathology reported from the liver in one bearded dragon displayed no significant findings
Helodermatid adenovirus 2 (HeAdV2):

• First isolated in 2009 from tissue homogenates collected from a mortality event at a Danish zoo (juveniles)
 • Co-housed **Gila monsters** and **Mexican beaded lizards**
 • Unfortunately, clinical signs and descriptive pathology for these mortality events were not described

• Subsequently, HeAdV2 has been detected from **three non-helodermatid host**: two **bearded dragons** (2011 & 2017) and one **death adder** (2017)
 • Animals displayed subjective signs such as “ill thrift” and “poor doing”
 • Histopathology reported from the liver in one bearded dragon displayed no significant findings

• Most recently, HeAdV2 has also been detected from cloacal swabs of **apparently healthy wild Gila monsters** (*Heloderma suspectum*) in North America
Reptilian Mycoplasmosis

• Squamate mycoplasmosis (*M. iguanae* and *M. insons*)
 • *M. iguanae* first isolated from an iguana with bone deformities
 • Experimental inoculation studies of *M. iguanae* failed to incite pathology (I.V. and I.N. inoculation)
 • *M. insons* was readily cultured from the posterior choana and upper trachea of inoculated and control iguanas at necropsy, suggesting that this organism represents a normal microbial flora of the upper respiratory tract
Reptilian Mycoplasmosis

- Squamate mycoplasmosis (*M. iguanae* and *M. insons*)
 - *M. iguanae* first isolated from an iguana with bone deformities
 - Experimental inoculation studies of *M. iguanae* failed to incite pathology (I.V. and I.N. inoculation)
 - *M. insons* was readily cultured from the posterior choana and upper trachea of inoculated and control iguanas at necropsy, suggesting that this organism represents a normal microbial flora of the upper respiratory tract

- Crocodilian mycoplasmosis (*M. crocodyli*)
 - Indicated in polyarthritis and pneumonia in young farmed crocodiles
Reptilian Mycoplasmosis

• Squamate mycoplasmosis (*M. iguanae* and *M. insons*)
 • *M. iguanae* first isolated from an iguana with bone deformities
 • Experimental inoculation studies of *M. iguanae* failed to incite pathology (I.V. and I.N. inoculation)
 • *M. insons* was readily cultured from the posterior choana and upper trachea of inoculated and control iguanas at necropsy, suggesting that this organism represents a normal microbial flora of the upper respiratory tract

• Crocodilian mycoplasmosis (*M. crocodyli*)
 • Indicated in polyarthritis and pneumonia in young farmed crocodiles

• Tortoise mycoplasmosis (*M. agassizii* and *M. testudinis*)
 • Extensively characterized in natural and experimental disease
 • Fulfillment of Koch’s postulates in URTD, with pneumonia rarely indicated
Case Summary:

• First report of pathology associated with HeAdV2
Case Summary:

• First report of pathology associated with HeAdV2
• Role of concurrent mycoplasma infection remains a mystery, but may have acted synergistically with HeAdV2 to cause pulmonary pathology (i.e. Chelonian herpesvirus and *M. agassizii*)
Case Summary:

• First report of pathology associated with HeAdV2
• Role of concurrent mycoplasma infection remains a mystery, but may have acted synergistically with HeAdV2 to cause pulmonary pathology (i.e. Chelonian herpesvirus and *M. agassizii*).
• An extensive diagnostic work up ruled out other viruses associated with reptilian pneumonia
 • Inclusions ≠ virus particles
Case Summary:

- First report of pathology associated with HeAdV2
- Role of concurrent mycoplasma infection remains a mystery, but may have acted synergistically with HeAdV2 to cause pulmonary pathology (i.e. Chelonian herpesvirus and *M. agassizii*)
- An extensive diagnostic work up ruled out other viruses associated with reptilian pneumonia
 - Inclusions ≠ virus particles
- Negative aerobic bacteriology results confounded by antibiotic treatment preceding death
Case Summary:

• First report of pathology associated with HeAdV2
• Role of concurrent mycoplasma infection remains a mystery, but may have acted synergistically with HeAdV2 to cause pulmonary pathology (i.e. Chelonian herpesvirus and *M. agassizii*)
• An extensive diagnostic work up ruled out other viruses associated with reptilian pneumonia
 • Inclusions ≠ virus particles
• Negative aerobic bacteriology results confounded by antibiotic treatment preceding death
• Koch’s postulates have yet to be proven for either of the organisms, stressing the importance of future experimental studies to gain a deeper appreciation for their significance in disease
Q: What do dragons call a knight in shining armor?

- SEVPAC organizers
- LSU histology team
- Coauthors
 - Daniel Paulsen, DVM, ACVP, PhD
 - Javier Nevarez, DVM, DACZM, PhD
 - James Wellehan, DVM, MS, PhD, DACZM, DACVM
 - Peter DiGeronimo, DVM
 - Yulia Sokolova, PhD
 - April Childress

Photo credit: http://www.reptilesupplyco.com/134-wholesale-reptile-canned-food
Q: What do dragons call a knight in shining armor?
A: Canned food

- SEVPAC organizers
- LSU histology team
- Coauthors
 - Daniel Paulsen, DVM, ACVP, PhD
 - Javier Nevarez, DVM, DACZM, PhD
 - James Wellehan, DVM, MS, PhD, DACZM, DACVM
 - Peter DiGeronimo, DVM
 - Yulia Sokolova, PhD
 - April Childress

Photo credit: http://www.reptilesupplyco.com/134-wholesale-reptile-canned-food

Permission granted only for viewing on SEVPAC website
Helodermatid Adenovirus 2 (HeAdV2) vs. Agamid Adenovirus 1 (AgAdv1):

DNA-dependent DNA polymerase gene:
- 66% nucleic acid homology
- 73.8% amino acid homology
Differentials: DNA Viruses

• **Iridovirus** (i.e. Ranavirus and invertebrate iridovirus)
 - Predominantly a dz. of *chelonians* and *amphibians* manifesting in necrotizing stomatitis/pharyngitis and hepatitis with vascular necrosis
 - 120-300 nm non-enveloped virions with icosahedral capsid
 - Basophilic to amphophilic intracytoplasmic inclusion bodies
 - To my knowledge inclusions have never been reported in pulmonary epithelium
 - Koch’s postulates haven’t been fulfilled for *invertebrate iridovirus*

• **Herpesvirus**
 - Predominantly a dz. of *chelonians* manifesting in necrotizing stomatitis with rare instances of hepatitis
 - Large virions >100 nm with enveloped icosahedral capsid
 - Large amphophilic to eosinophilic intranuclear inclusions

• **Adenovirus**
 - 80-100 nm, non-enveloped with an icosahedral capsid
 - Large basophilic and eosinophilic intranuclear inclusions particularly in hepatocytes and enterocytes

(PCR and virus isolation demonstrated the presence of *ranavirus*, *adenovirus* and invertebrate *iridovirus*)
Differentials: RNA Viruses

- **Reovirus**
 - Changes in the lungs, no specific signs, enteropathy and hepatopathy in leopard geckos
 - **Non-enveloped** virions 60 to 80 nm in diameter
 - No reports of inclusion bodies with light microscopy
 - Koch’s postulates have yet to be reported in lizards

- **Paramyxovirus**
 - Respiratory disease most commonly reported in snakes, although CNS disease is also regularly observed
 - Virions are large, ranging in size from 190-420 nm, spheroid or filamentous, and consist of an envelope surrounding the nucleocapsid
 - Koch’s postulates have been proved with pulmonary lesions in Aruba Island rattlesnakes
 - Infections in lizards and chelonians are considered rare