Biography

Mark Tompkins

Animal Health Research Center, Center for Vaccines and Immunology, Infectious Diseases
PhD
Professor

Expertise

  • Immunology
  • Infectious Diseases
  • Vaccinology
  • Virology

Biography

S. Mark Tompkins, PhD, received his doctorate in immunology from Emory University and then studied immune mechanisms of antigen- and virus-induced autoimmune diseases as a National Multiple Sclerosis Society Postdoctoral Fellow at Northwestern University Medical School. In 2002, Dr. Tompkins joined the Center for Biologics Evaluation and Research at the FDA as a Research Fellow, focusing on influenza virus vaccines and therapies.

Dr. Tompkins joined the University of Georgia College of Veterinary Medicine in 2005, where he is a member of a NIAID Center of Excellence for Influenza Research and Surveillance. In 2012, he was awarded a Senior Fulbright Scholar’s Award to work with the Australian Animal Health Laboratories in Geelong, Australia for six months. In 2016, Dr. Tompkins joined UGA’s newly established Center for Vaccines and Immunology to collaborate with members on cutting edge vaccines for infectious disease.

His research focuses on understanding the emergence, pathogenesis, prevention, and treatment of influenza viruses. These studies include surveillance for influenza virus in animal populations, susceptibility of different species to influenza infection, and influenza virus evolution. Areas of research include dissecting virus-host interactions at the cellular and host level and exploiting these interactions to collaboratively develop novel vaccines, antiviral drugs, and treatments for human and animal use.

Research Interests

  • Immune response to influenza virus infection
  • Development of novel vaccines and therapeutics for seasonal and pandemic influenza
  • Anti-viral RNA interference​

Educational Background

  • ​PhD (1997), Immunology, Emory University
  • BS (1990), Microbiology, University of Illinois

Activities

My laboratory focuses on understanding the immune response to influenza virus infection and developing novel vaccines and treatments for use against human and avian influenza strains. Influenza virus infects about 10% of the world population annually. In the United States alone, influenza infection is responsible for about 36,000 mortalities. Moreover, avian influenza continues to pose the threat of a pandemic that the world is unprepared for. New vaccines and therapeutic strategies are needed.

In general, my research is centered on understanding the immune response to influenza infection. By understanding how immunity to influenza in initiated and maintained we can better design new vaccines and therapies. Additionally, influenza infection is often followed with other respiratory infections that can lead to additional pathology and clinical symptoms. Understanding how the immune system responds to polymicrobial infections and how the multiple pathogens impact the immune response is critical for designing effective treatments for these diseases.

My vaccine and therapeutic research is focused in two areas. The first area is centered on using RNA interference as a therapy to inhibit viral replication in vivo and protect animals against lethal influenza virus challenge. Using an established murine model of influenza infection, we have demonstrated that treatment in vivo with influenza-specific small, interfering RNAs can suppress viral replication and protect animals from lethal infection. Future studies are directed toward development of this technology as a viable therapy with particular interest in its efficacy in immunocompromised individuals and against pandemic influenza. The second focus involves vaccination studies using modified plasmid and viral vectors. These vectors can induce immunity against highly conserved influenza antigens and provide broadly cross-reactive protection against influenza infection. Previous studies have shown that vaccination with vectors expressing conserved components of the influenza virus can provide protection against influenza challenge, including highly pathologic avian influenza viruses. Continuing vaccine studies are directed toward enhancing and fully characterizing this protection, using novel adjuvants and delivery systems, with the ultimate goal of developing a universal influenza vaccine. ​

Selected Publications

Search PubMed for “tompkins sm”

  • Li Z, Gabbard JD, Mooney A, Gao X, Chen Z, Place RJ, Tompkins SM, He B. Single Dose Vaccination Of A Recombinant Parainfluenza Virus 5 Expressing NP From H5N1 Provides Broad Immunity Against Influenza A Viruses. J Virol. 2013 Mar 20.
  • Mooney AJ, Tompkins SM. Experimental vaccines against potentially pandemic and highly pathogenic avian influenza viruses. Future Virol. 2013 Jan 1;8(1):25-41.
  • Laing EM, Tripp RA, Pollock NK, Baile CA, Della-Fera MA, Rayalam S, Tompkins SM, Keys DA, Lewis RD. Adenovirus 36, adiposity, and bone strength in late-adolescent females. J Bone Miner Res. 2013 Mar;28(3):489-96.
  • Perwitasari O, Yan X, Johnson S, White C, Brooks P, Tompkins SM, Tripp RA. Targeting organic anion transporter 3 with probenecid as a novel anti-influenza a virus strategy. Antimicrob Agents Chemother. 2013 Jan;57(1):475-83.
  • Mooney AJ, Li Z, Gabbard JD, He B, Tompkins SM. Recombinant parainfluenza virus 5 vaccine encoding the influenza virus hemagglutinin protects against H5N1 highly pathogenic avian influenza virus infection following intranasal or intramuscular vaccination of BALB/c mice. J Virol. 2013 Jan;87(1):363-71.
  • Li Z, Mooney AJ, Gabbard JD, Gao X, Xu P, Place RJ, Hogan RJ, Tompkins SM, He B. Recombinant parainfluenza virus 5 expressing hemagglutinin of influenza A virus H5N1 protected mice against lethal highly pathogenic avian influenza virus H5N1 challenge. J Virol. 2013 Jan;87(1):354-62.
  • Bakre A, Mitchell P, Coleman JK, Jones LP, Saavedra G, Teng M, Tompkins SM, Tripp RA. Respiratory syncytial virus modifies microRNAs regulating host genes that affect virus replication. J Gen Virol. 2012 Nov; 93(Pt 11):2346-56.
  • Driskell EA, Jones CA, Berghaus RD, Stallknecht DE, Howerth EW, Tompkins SM. Domestic cats are susceptible to infection with low pathogenic avian influenza viruses from shorebirds. Vet Pathol. 2013 Jan;50(1):39-45.
  • Driskell EA, Pickens JA, Humberd-Smith J, Gordy JT, Bradley KC, Steinhauer DA, Berghaus RD, Stallknecht DE, Howerth EW, Tompkins SM. Low pathogenic avian influenza isolates from wild birds replicate and transmit via contact in ferrets without prior adaptation. PLoS One. 2012;7(6):e38067.
  • Meliopoulos VA, Andersen LE, Brooks P, Yan X, Bakre A, Coleman JK, Tompkins SM, Tripp RA. MicroRNA regulation of human protease genes essential for influenza virus replication. PLoS One. 2012;7(5):e37169.